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EFFECT OF ALLOWANCE FOR SMALL-SCALE PERTURBATIONS

OF THE CARRIER PHASE ON PROPERTIES OF THE SYSTEM OF

EQUATIONS OF A TWO-FLUID FLOW WITH INCOMPRESSIBLE PHASES

UDC 532.54:532.529.5B. L. Kantsyrev

The effect of the fluctuating components of kinetic energy and stress tensor of the carrier phase,
which were previously obtained by the cell technique, on the properties of the system of equations
of a gas–liquid flow with incompressible phases is considered. It is shown that the characteristic
properties of this system and also the possibility of modeling the Zuber–Findlay empirical relation are
determined by the tensor of fluctuating stresses of the carrier phase.
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Introduction. Modeling of multiphase disperse flows is known to involve equations obtained by the method
of averaging of the classical hydrodynamic equations [1] or by variational methods [2]. The final form of the system
has not been yet established. As was indicated in [1], further refinement of expressions for the stress tensor,
interphase forces, etc., is needed. The problem of refinement of the form of equations of heterogeneous flows is
largely associated with modeling of effects caused by perturbations introduced into the carrier-phase flow by the
motion of disperse particles. In the system of hydrodynamic equations, the effect of such small-scale perturbations
is taken into account by fluctuating terms similar to Reynolds stresses in modeling of turbulent motion of the fluid.
In calculating the fluctuating terms, the parameters characterizing the distribution of disperse particles in the flow
are usually used as the initial parameters.

In calculating the force of interaction of spherical bubbles with the carrier flow of an ideal incompressible
liquid (with allowance for the mutual influence of the bubbles), the binary distribution function, which shows the
probability of relative positioning of two disperse particles in the liquid, was used in [3] as a parameter. By varying
the form of this function, Kroshilin and Kroshilin [3] calculated the averaged force for both random and ordered
distributions of particles.

In [1], the model parameters are the geometric parameters of the cell. For a spherical cell, these are the
dimensionless parameter ηc characterizing the ratio of the cell size to the length of the zone of the carrier-phase
flow disturbed by the disperse particle. Arbitrary definition of the initial parameter has no effect on the structure
of relations determining, e.g., the parts of the fluctuating component of the surface-force tensor but introduce some
uncertainty into the numerical value of the coefficient ηc. The choice of this coefficient takes into account the
influence of the flow structure on the calculation result.

Hence, the complexity of the objects and processes under study not only makes their modeling difficult
but also hinders obtaining and processing of experimental information necessary for correct selection of the initial
parameters of the model. Indeed, it is possible but extremely difficult to experimentally determine such a model
parameter as, e.g., the binary probability distribution function. Therefore, the parameters of numerical models
are often found and optimized in an indirect manner, by comparing the properties of the model and numerical
results with the data of experiments where the measured parameters are the mass flow rates, gas contents, pressure
distributions, etc. (these quantities are not parameters of two-phase flow models).
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The objective of the present work is to analyze the wave properties of the system of equations of a gas–liquid
flow, which was obtained with allowance for fluctuating components of kinetic energy and stresses in the carrier
(liquid) phase. The form of coefficients at fluctuating terms is chosen such that the wave properties of the model
do not contradict the consequences of the Zuber–Findlay empirical law [4, 5]. In addition, the form of the system
should not contradict the procedure of averaging of hydrodynamic “microequations” [1] from which it is derived. It
is important that the bubbly flow model [6] possesses the properties that take into account the Zuber–Findlay law,
though the possibility of deriving equations of motion with such properties were not discussed in [6]. Therefore,
it is of interest to consider the procedure of obtaining the equations of motion at least in the approximation of
phase incompressibility. Construction of a system with the properties mentioned above will allow combining the
advantages of two-fluid models (possibility of taking into account the inertia of each phase and the effect of virtual
mass, more detailed allowance for acoustic processes in the flow (see, e.g., [6]) as compared to the one-fluid model)
and exact modeling of propagation of kinematic waves, which is successfully performed in one-fluid modeling.

The analysis is important because correct allowance for the Zuber–Findlay law is hindered in modeling of
heterogeneous flows within the framework of a two-fluid system of equations of hydrodynamics of a heterogeneous
flow (e.g., in TRAC or CATHARE computational codes), and this problem in the practice of numerical calculations
is often solved within the framework of one-fluid modeling, where phase slipping U is specified directly from empirical
data.

Basic Assumptions. The kinetic energy of small-scale motion (which is determined by the trace of the
tensor of fluctuating stresses) and the fluctuating component of the surface stress tensor corresponding to the
spatially one-dimensional averaged equation of motion of the liquid phase are presented as

K1 = α2χU
2/2; (1)

Π1 = α2ψU
2, (2)

where α2 is the volume gas content, U = V2−V1 is the relative velocity of the phases, V2 and V1 are the macroscopic
(averaged) velocities of the disperse and carrier phases, respectively, and χ and ψ are the functions of the volume
gas content; α2, χ, and ψ are considered as the sought parameters in the present work. Their choice effectively
takes into account the influence of the flow structure, possible deviations of the bubble shape from a sphere, and the
effect of the difference between the pressure averaged over the bubble surface and the mean pressure in the liquid.
In deriving Eqs. (3) and (4), phase transitions are ignored, the bubbles are considered as solid spherical particles,
the phase are assumed to be incompressible, and the heat transfer between the phases is also ignored. Thus, the
internal energy of each phase is considered to be unchanged. The effect of viscosity is taken into account later, in
Eqs. (5) and (6).

System of Equations. With allowance for the above said, we write the momentum- and energy-balance
equations for a two-phase flow as a whole:

ρ1α1
d1V1

dt
+ ρ2α2

d2V2

dt
+
∂(P + ρ1Π1)

∂z
= Fext; (3)

ρ1α1
d1(V 2

1 /2 +K1)
dt

+ ρ2α2
d2(V 2

2 /2)
dt

− ∂C1

∂z
= FextV. (4)

Here dk/dt = ∂/∂t + Vk ∂/∂z, k = 1, 2 [the subscripts 1 and 2 refer to the liquid (carrier) and disperse phases,
respectively], α1 + α2 = 1, P is the pressure, W = α1V1 + α2V2, and C1 = −PW − V2ρ1Π1 is the work of surface
forces [1, Chapter 3]. If phases 1 and 2 are incompressible, Eqs. (3) and (4) can be transformed to

∂(ρ1α1V1)
∂t

+
∂(ρ1α1V

2
1 + α1P + ρ1Π1)

∂z

= −P ∂α2

∂z
− χρ1α1α2

(d1V1

dt
− d2V2

dt

)
+ ΦαU

2 ∂α2

∂z
+ ΦuU

∂U

∂z
+ F1; (5)

∂(ρ2α2V2)
∂t

+
∂(ρ2α2V

2
2 + α2P )
∂z

= P
∂α2

∂z
+ χρ1α1α2

(d1V1

dt
− d2V2

dt

)
− ΦαU

2 ∂α2

∂z
− ΦuU

∂U

∂z
+ F2, (6)
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where

Φα = ρ1

{d(α2ψ)
dα2

− α2ψ −
α1

2

[
χ(1− 3α2) + α1α2

dχ

dα2

]}
; (7)

Φu = ρ1

{
2α2ψ + α1α2

[
ψ − α1

2

(
3χ+ α2

dχ

dα2

)]}
. (8)

It is seen from (5), (6) that, if the fluctuating terms of system (1) are ignored (for ψ = 0 and χ = 0), this system is
the equations of momentum in the form of the Euler equations with allowance for the Rakhmatulin force. Allowance
for kinetic energy of small-scale motion in expressions (3) and (4) ensures allowance of the force of virtual masses
χρ1α1α2(d1V1/dt − d2V2/dt) in (5) and (6), and the value χ = 1/2 for α2 = 0 obtained in [1] corresponds to the
correct limiting value of the coefficient of virtual masses.

The terms in the right sides of (5) and (6) proportional to ∂α2/∂z and ∂U/∂z correspond to interphase
forces caused by small-scale motion and collective interactions of disperse particles with the carrier flow [3]. The
terms F1 and F2 in the right side of Eqs. (5) and (6) express the external volume forces, but in what follows we
assume that

F1 = ρ1α1gz − F12, F2 = ρ2α2gz + F12, F12 = −α1α2KµU |U |. (9)

Here F12 is the force of interphase interaction due to viscosity and Kµ is the drag coefficient depending on the
carrier flow regime around the disperse particles, volume gas content, disperse particle size, and carrier phase
density. Relations (5) and (6) are the equations of motion for the phases of the bubbly flow.

Characteristic Properties of the System of Equations. Representing the velocity of each phase as a
function of the total volume flow rate W and slipping U and eliminating terms containing ∂P/∂z from Eqs. (5)
and (6), we obtain the following equation for phase slipping:

∂U

∂t
+ (W + UKu)

∂U

∂z
− U2Kα

∂α2

∂z
= F. (10)

Here

Ku =
ρ1

R

(
3(ψ − 0.5α1χ)− 0.5α1α2

dχ

dα2
+
α1ρ2

ρ1
− α2 + χ(α1 − α2)

)
,

Kα =
ρ1

R

( 1
α1α2

d[α1α2(0.5α1χ− ψ)]
dα2

+
ρ

ρ1
+ χ

)
,

R = ρ1ρ2
1 + χρ∗/ρ2

ρ∗
,

1
ρ∗

=
α1

ρ1
+
α2

ρ2
, F =

g∗(ρ1 − ρ2)−KµU |U |
R

, g∗ =
dW

dt
− gz.

We consider Eq. (10) together with the equations of continuity for the liquid and gas phases:

∂(ρ1α1)
∂t

+
∂(ρ1α1V1)

∂z
= 0; (11)

∂(ρ2α2)
∂t

+
∂(ρ2α2V2)

∂z
= 0. (12)

If the phases are incompressible, Eqs. (11) and (12) yield the condition of independence of the volume flow rate W
of the coordinate [which allows us to consider W as the boundary condition (a given function of time)] and the
equation for the volume gas content

∂α2

∂t
+
∂(α2V2)
∂z

= 0. (13)

Taking into account that V2 = W + α1U , we obtain from (13)

∂α2

∂t
+ α1α2

∂U

∂z
+ [W + (α1 − α2)U ]

∂α2

∂z
= 0. (14)

System (10) and (14) is closed. Its characteristic equation has two roots:

λ1 = W + U [α1 − α2 +Ku + ((α1 − α2 −Ku)2 − 4α1α2Kα)0.5]/2; (15)

λ2 = W + U [α1 − α2 +Ku − ((α1 − α2 −Ku)2 − 4α1α2Kα)0.5]/2. (16)
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We require that the following obvious condition be satisfied as α2 → 0:

λ1 = λ2 = V2 (17)

(V2 is the velocity of the disperse phase). Indeed, as α2 → 0, the velocity of propagation of gas-content perturbations
in the flow should approach the velocity of gas bubbles. As follows from Eqs. (15) and (16) and from the definition
of the functions Ku and Kα, condition (17) is satisfied if, as α2 → 0, we have

α1χ/2− ψ ∼ αm
2 , (18)

where m > 1. For α2 = 0, it follows from Eq. (18) that χ/2 = ψ; ψ = 0.25 for χ = 1/2. This value of ψ differs from
that obtained in [1] for spherical bubbles and equal to 0.2, which can be explained by the influence of assumptions
accepted in determining the quantities K1 and Π1.

The Zuber–Findlay relation [4]

V2 = C0W + Vw (19)

(C0 and Vw are independent of W ) yields the drift equation (see [5]). Indeed, we consider the particular case of
Eq. (19) corresponding to C0 = 1. Obviously, in this case, Eq. (19) yields the relation determining phase slipping
as a function of the volume gas content:

U = U0(α2). (20)

The relation of the form (20) is rather generic. According to [7], where empirical data for calculating the relative
phase velocity in an upward two-phase flow are given, the assumption C0 = 1 is fairly justified for α2 6 0.65.
Substituting relation (20) into (14), we obtain the expression known in the literature (see, e.g., [5, p. 295]) as the
drift equation

∂α2

∂t
+ Vd

∂α2

∂z
= 0, (21)

where Vd = W+(α1−α2)U0+α1α2 dU0/dα2. Note, for α2 → 0, the relation for Vd does not contradict condition (17).
As was indicated in [5, 8], the drift model correctly describes the wave processes in two-phase flows with

incompressible phases. Moreover, an unsteady process such as the decay of an arbitrary discontinuity (without
allowance for compressibility effects) was analyzed in [5] from the viewpoint of the drift model.

Under these circumstances, it seems reasonable to determine the parameters of Eqs. (10) and (14) [χ = χ(α2)
and ψ = ψ(α2)] based on the condition of agreement with the wave properties of the drift equation.

In the steady regime with a uniform distribution of the gas content and slipping of the phases, relation (10)
is responsible for satisfaction of the equality F = 0, which, in the case of a proper choice of the coefficient Kµ (as
was demonstrated in [9]), coincides with the empirical relation (20). The required agreement of the wave properties
is observed under the condition

λ1 = λ2 = Vd (22)

for 0 6 α2 6 1.
It follows from Eqs. (15) and (16) that Eq. (22) is valid if the functions χ and ψ satisfy the following system:

Kα

(
χ, ψ,

dχ

dα2
,
dψ

dα2

)
= α1α2

(d lnU0

dα2

)2

,

Ku

(
χ, ψ,

dχ

dα2

)
= α1 − α2 + 2α1α2

d lnU0

dα2
.

(23)

For moderate values of α2, for which the flow can be considered as bubbly, the solution of system (23) χ, ψ with
the initial conditions χ(0) = 1/2 and ψ(0) = 1/4 is monotonically decreasing positive functions. The dependence
χ = χ(α2) obtained by solving Eq. (23) numerically under the assumption that U0 = const/α1 and ρ2 � ρ1 is
plotted in Fig. 1 by curve 1. Curve 2 is the dependence

χ = (1− ηcα2)/α1, (24)

obtained in [1, p. 124] by the cell method. The best agreement of the solution of system (23) and dependence (24) is
observed for the value of the cell-model parameter ηc = 3.5. This value of ηc corresponds to fluctuating small-scale
motion that covers a certain layer of the carrier phase near the disperse particle; the thickness of this layer is 82%
of the cell size.
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Fig. 1. Dependence χ(α2).
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Fig. 2. Dependence α2(z/L0) for t = 0 (1), 3L0/U (2), 20L0/U (3), and 100L0/U (4); L0/U is the
characteristic time of process stabilization in the drift model, determined in accordance with [6].

As an example of using this model, we consider the process of stabilization of a counterflow in a vertical
channel. This example corresponds to the concepts about the final stage of an accident with the loss of coolant in
the casing of the water-moderated power reactor, where water boiling with subsequent “hanging” of the water layer
on a steam “cushion” occurs [9]. This “hanging” is broken because of its instability. Water moves downward, and
steam moves upward. It was shown [6] that, if we choose Eq. (19) under the condition

C0 = 1, Vw = C(1 + (ρ2/ρ1)0.5α2/α1) (25)

as the closing relation in modeling within the framework of the one-fluid model, we obtain a steady uniform
distribution of the gas content with a value of α∗2 corresponding in the theory of kinematic waves [7] to the Wallis
formula for flow choking:

W 0.5
1 + (ρ2/ρ1)0.25W 0.5

2 = C0.5.

Here W1 and W2 are the mean-volume flow rates of the liquid and gas, respectively, and C is the coefficient
determined by test conditions. This means that the correct result can be obtained comparatively easily within
the framework of the one-fluid model with a closing relation of the form (19). In two-fluid modeling, which seems
to be more exact and detailed and where each phase has its “own” differential equation of motion, the correct
choice of parameters, generally speaking, is not always possible even if the system of equations of the gas–liquid
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flow is hyperbolic. Within the present model, however, as was shown above, it is possible to set the required wave
properties. Figure 2 shows the distributions of the parameter α2 along the channel for different times, which were
obtained using this model. One can see that counterflow stabilization occurs at α2 = α∗2.

Conclusions. The present analysis shows that the allowance for fluctuating components in momentum- and
energy-balance equations allows obtaining a closed system of two equations of motion and two continuity equations,
which possesses prescribed characteristic properties. The use of this technique allows one to take into account the
Zuber–Findlay empirical law within the framework of the two-fluid calculation model. The form of the fluctuating
components does not contradict the results obtained by the cell model.

It should be noted that, for the solutions of the drift equation (21) α2 = α2(z, t), relation (20) is also a
solution of Eq. (10) if condition (23) is satisfied and the volume flow rate W varies linearly with time. Thus, within
the framework of model (10)–(12), (23), the solutions of the drift equation U = U0(α2) obtained from the condition
F = 0 can be considered as the Riemann solutions.
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